Peculiarities in light scattering by spherical particles with radial anisotropy.
نویسندگان
چکیده
Light scattering by a spherical particle with radial anisotropy is discussed by extending Mie theory to diffraction by an anisotropic sphere, including both the electric and the magnetic anisotropy ratio. It is shown that radial anisotropy may lead to great modifications in scattering efficiencies and field enhancement, elucidating the importance of anisotropies in the control of scattering. The capacity for nondissipating damping is demonstrated for anisotropic spheres with different signs in radial and transversal permittivities.
منابع مشابه
A Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere
The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...
متن کاملUltra-directional super-scattering of homogenous spherical particles with radial anisotropy.
We study the light scattering of homogenous radially-anisotropic spherical particles. It is shown that radial anisotropy can be employed to tune effectively the electric resonances, and thus enable flexible overlapping of electric and magnetic dipoles of various numbers, which leads to unidirectional forward super-scattering at different spectral positions. We further reveal that through adjust...
متن کاملLight scattering by optically anisotropic scatterers: T-matrix theory for radial and uniform anisotropies.
We extend the T-matrix approach to light scattering by spherical particles to some simple cases in which the scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include radially and uniformly anisotropic layers. We find that in both cases the T-matrix theory can be formulated using a modified T-matrix ansatz with suitably defined modes. In a un...
متن کاملControlling light scattering and polarization by spherical particles with radial anisotropy.
Based on full-wave electromagnetic theory, we derive the zero-forward and zero-backward scattering conditions for radially anisotropic spheres within the quasi-static limit. We find that the near-field intensity can be tuned dramatically through the adjustment of the radial anisotropy, while the far-field light scattering diagrams are similar under the zero-forward or zero-backward scattering c...
متن کاملDetermination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering
Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2008